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Especially in the case of precipitation, shorter periods may 
not produce reliable statistics due to annual variances.

However, thirty years of high-resolution precipitation 
data suitable for these applications is not always available. 
In the Australian context, for instance, half-hourly precipi-
tation readings are often only available since the late 1990s 
and early 2000s, when the Bureau of Meteorology (BoM) 
installed automatic Tipping Bucket Rain Gauges (Austra-
lian Bureau of Meteorology 2010). Prior to this, precipi-
tation data was primarily collected through daily manual 
readings of the rain gauge by post office staff or volunteers 
at 0900 local time. As hourly or sub-hourly data is essen-
tial for reliable built environment modelling (Brigandì and 
Aronica 2019), there is a clear need for precipitation disag-
gregation algorithms that can produce this data.

This paper presents a novel approach to precipitation 
disaggregation by introducing a long short-term memory 
(LSTM) network for daily-to-half-hourly precipitation dis-
aggregation. To our knowledge, this is the first machine 
learning method to achieve this level of temporal resolu-
tion in disaggregation. Prior work has focussed on daily-
to-hourly disaggregation (Bhattacharyya and Saha 2022) 
or coarser resolutions. Our model leverages the ability of 
LSTMs to capture temporal dependencies in sequential 
data, thus improving the consistency of the disaggregated 

1 Introduction

Building simulation and modelling software is increasingly 
used to optimize design parameters for energy efficiency 
and to predict performance of a building’s systems under 
various conditions (de Wilde 2023). Meaningful weather 
and climate data forms an essential component of these 
systems, as well as other systems like hydrological models 
(Horton et al. 2022). In order to define a climate normal, 
the World Meterological Organization recommends using 
at least thirty years of historical data (WMO 2023, p. 25). 
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Abstract
High-resolution precipitation data is crucial for modern hydrological and building hygrothermal performance simulation 
models. In Australia, historical observations are inadequate, as half-hourly recordings only replaced daily observations 
at many stations from the early 2000s. Moreover, existing machine learning approaches are limited to generating hourly 
time series data. This paper presents a recurrent neural network using long short-term memory to disaggregate daily 
precipitation observations into half-hourly intervals. The model leverages temporal dependencies and hourly weather 
measurements. Our results, based on stations across five Australian climate zones, demonstrate that the model effectively 
preserves key half-hourly precipitation statistics, including variance and the quantity and distribution of wet half-hours. 
When aggregated to hourly intervals, our model outperforms other models in most measured metrics.
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sequences. Critically, we introduce a novel normalization 
layer, integrated directly into the network architecture, 
that guarantees the conservation of the daily precipitation 
total. This ensures that the sum of the disaggregated half-
hourly values exactly matches the observed daily total, a 
fundamental requirement of disaggregation that is often not 
strictly enforced in ‘black-box’ ML models. Furthermore, 
our model incorporates key hourly meteorological variables 
(atmospheric pressure, dry-bulb and dew point temperatures, 
and relative humidity). This integrated approach—combin-
ing context, a normalization layer, and meteorological pre-
dictors—results in a novel method for daily-to-half-hourly 
precipitation disaggregation.

A key benefit of generating half-hourly precipitation 
instead of hourly precipitation is that it enables consistency 
between different file formats. For instance, the Energy-
Plus Weather (EPW) format used in the building energy 
simulation program EnergyPlus (US Department of Energy 
2024), and the Australian Climate Data Bank (ACDB) for-
mat used by the Nationwide House Energy Rating Scheme 
(NatHERS) software (Tan et al. 2023) use different time-
stamp conventions. Both file types use hourly data, but their 
timestamp conventions differ by half an hour. EPW records 
the hour before the timestamp, while ACDB records the 
hour centred on the timestamp. This difference is neatly 
illustrated in Fig. 1. Half-hourly precipitation can be re-
aggregated to accommodate this difference.

Disaggregation, like downscaling, is the process of pro-
ducing high-resolution data that is statistically consistent 
with the original, coarser-scale data (Koutsoyiannis 2003). 
While similar to downscaling, disaggregation has the addi-
tional requirement that the sum of the disaggregated values 
should closely match the total from the original, coarser-
resolution data (Knoesen and Smithers 2009).

Various stochastic methods have been developed for both 
disaggregation and downscaling. Random cascade models, 
which distribute precipitation iteratively into successively 
smaller timescales according to a generator function that sto-
chastically partitions precipitation amounts while adhering 
to either canonical (average) or microcanonical (strict) con-
servation of coarser-scale totals, have demonstrated success 
in maintaining statistical properties of precipitation (Olsson 
1998; Müller and Haberlandt 2018). Microcanonical mod-
els are particularly relevant to temporal disaggregation, as 
they preserve precipitation totals across each scale, unlike 
canonical approaches which do not exhibit this property. 

Similarly, Poisson cluster models, such as the Bartlett-Lewis 
and Neymann-Scott models, have been widely applied to 
disaggregate daily precipitation by simulating rainfall as a 
sequence of storm events (Onof and Wang 2020; Cowpert-
wait and O’Connell 1997; Yusop et al. 2013; Koutsoyiannis 
and Onof 2001; Onof et al. 2000).

While these stochastic approaches have proven effective 
in many applications, they still display some disagreement 
with recorded measurements and require a large number of 
parameters for modelling (Ferrari et al. 2022; Cowpertwait 
et al. 2007; Rohith et al. 2020). Calibration of these param-
eters introduces complexity into the modelling process and 
can impact model performance and reliability. Compu-
tational efficiency presents another challenge. Stochastic 
methods, such as Markov chain Monte Carlo, often require 
significant resources and time to converge. Moreover, cal-
culating the time to convergence for these methods cannot 
be done in polynomial time (Bhatnagar et al. 2011). This 
increased computational burden not only raises infrastruc-
ture costs but also limits the practicality of these algorithms.

Given these drawbacks, many researchers have turned to 
machine learning techniques, particularly neural networks, 
for precipitation disaggregation. Early work by Burian et al. 
(2001) investigated the use of feed-forward neural networks 
to disaggregate hourly data into 15-min intervals. Building 
on this approach, Bhattacharyya and Saha (2022) extended 
the application of feed-forward networks to perform daily-
to-hourly disaggregation. Their model disaggregated pre-
cipitation for day t by inputting the daily totals of days t 
and t − 1, along with the day, month, and a category label. 
This label was derived from k-means clustering (k = 4) 
on the daily totals of days t, t − 1 and t + 1. However, the 
model did not include meteorological variables which are 
known to be associated with the onset of precipitation, such 
as atmospheric pressure or humidity (Hintz et al. 2019).

While not directly addressing disaggregation, the work of 
Misra et al. (2017) on precipitation downscaling using long 
short-term memory (LSTM) networks opened new avenues 
for research. Their success in downscaling precipitation from 
climatic variables generated by general circulation models 
suggests that similar recurrent neural network architectures 
could be effective for disaggregation tasks. This approach’s 
ability to capture temporal dependencies in sequential data 
makes it particularly promising for precipitation modelling. 
Inspired by this prior work, we implement a neural network 
with LSTM layers for sub-hourly disaggregation using 

Fig. 1 Timestamp conventions for ACDB 
and EPW formats
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PyTorch (Paszke et al. 2019), extending the application of 
these models to finer temporal resolutions.

For our study, we exploit historical weather data for sev-
eral Australian cities, where hourly weather data and half-
hourly precipitation data is available since at least 2001. 
We show that our approach preserves the statistical met-
rics examined in our study from the observed time series, 
and performs favourably compared to other disaggregation 
approaches. The rest of this paper is organized as follows. 
Section 2 introduces the stations under study and describes 
the data utilized by the model, followed by a detailed expla-
nation of the model architecture and implementation specif-
ics. Section 3 presents the model’s results and provides a 
comprehensive analysis of its performance across various 
metrics. Finally, Sect. 4 summarizes the model’s perfor-
mance, its implications, and outlines directions for future 
research.

2 Methodology and data

2.1 Areas of study

Our investigation utilizes data from five stations across 
Australia. Table 1 presents these stations, their locations 
and their respective climate zones as defined by the Austra-
lian Building Codes Board (2024). The table also indicates 
the year and month when a tipping bucket rain gauge was 
installed at each station, marking the onset of half-hourly 

precipitation data availability. For all stations, the data 
series continues through the end of 2022.

2.2 Data preprocessing and variable selection

Hourly meteorological data (excluding precipitation) for 
each station was provided to the research team in the TMY2 
format. These TMY2 files did not contain missing values for 
the variables used in our analysis; Exemplary Energy had 
already filled missing data using techniques prescribed in 
the TMY2 specification manual (Marion and Urban 1995). 
After parsing, the data is linearly interpolated to half-hourly 
intervals and inner joined with the station’s precipita-
tion data. Datetimes with missing precipitation values are 
excluded from the join.

While Cairns’ and Brisbane’s data required no temporal 
adjustment, the other locations’ daily precipitation measure-
ments needed to be aligned to account for daylight saving 
time. These locations undergo biannual one-hour shifts, 
requiring temporal alignment between the daily precipi-
tation readings and other meteorological elements, as the 
half-hourly precipitation data is consistently recorded in 
Australian Eastern Standard Time.

To train and test the model, we split the data into three 
sets. We test the model on all data from 2020 to 2022, use 
2018 and 2019 as the validation set to evaluate the model 
during training, and train the model on all remaining data. 
This results in a train-test-validation split of roughly 75%–
10%–15%. The training dataset was shuffled to allow the 
model to learn from a more representative sample in each 
batch.

We selected station atmospheric pressure, dry bulb and 
dew point temperatures, and relative humidity as the mod-
el’s input features based on both the reliability of these mea-
surements and their Pearson correlation to precipitation in 
the Sydney dataset. Table 2 summarises the variables used 
in the summary and their respective resolutions.

While cloud cover has a strong correlation with precipi-
tation (Mishra 2019), we excluded it from our feature set. In 
the early years of BoM datasets, cloud cover data is often 
only available as a derivative of insolation. This results in 
unreliable linear interpolations between pre-dusk and post-
dawn values for nighttime hours.

The selected features were standardized by centering 
(subtracting the mean) and scaling to unit variance. The pre-
processed data was then loaded into a PyTorch Dataset 
class, where it was grouped by day starting from 0900 and 
processed into three tensors: an input sequence tensor, a tar-
get tensor, and a daily total tensor.

Table 1 Stations used in the study
Location WMO 

index
Station 
coordinates

Climate 
zone

Half-
hourly 
record 
start

Half-
hourly pre-
cipitation 
missing %

Cairns 
(CN)

94,287 – 16.87, 
145.75

Climate 
Zone 1

2001–
2009

2.81

Brisbane 
(BR)

94,578 – 27.39, 
153.13

Climate 
Zone 2

2000–
2003

0.92

Sydney 
(SY)

94,768 – 33.86, 
151.20

Climate 
Zone 5

1998–
2012

6.77

Melbourne 
(ME)

94,868 – 37.83, 
144.98

Climate 
Zone 6

1997–
2010

8.92

Canberra 
(CA)

94,926 – 35.30, 
149.20

Climate 
Zone 7

2000–
2004

12.01

Table 2 Summary of variables used in study
Variable Resolution
Precipitation (mm) Half-hourly
Atmospheric pressure (hPa) Hourly
Dry-bulb temperature (Tenths of ◦C) Hourly
Dew point temperature (Tenths of ◦C) Hourly
Relative humidity (%) Hourly
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f(x) = max(0, x)

acts upon each prediction and ensures outputs are non-nega-
tive (as precipitation cannot be negative) before the singleton 
dimension is removed by a squeeze operation. The resulting 
tensor, alongside a tensor (b, 1) of daily totals, are input into 
the normalization layer, which scales each day’s predictions 
to ensure they sum to the known daily total. The final tensor 
of size (b, 48) contains the half-hourly predictions for each 
day contained in the batch, effectively disaggregating the 
daily totals into a plausible sub-daily distribution.

The normalization layer is a novel addition to our net-
work in the context of disaggregation. Its primary purpose 
is to ensure that the predicted half-hourly precipitation 
values sum exactly to the known daily total, maintaining 
consistency between our model’s output and the observed 
sequence. For each daily sequence vector x⃗ and daily total 
t, we define the layer in the following way:

F (x⃗, t) =

{
0⃗, for t < ε

t ·
((∑48

i=1 x⃗i

)
+ ε

)−1
x⃗ otherwise

}

where ε > 0 is a small constant to ensure the function is 
differentiable across its domain, which is crucial for back-
propagation during network training, and to account for 
floating point error. We set ε = 10−8 in our experiments, 
though this choice was largely arbitrary. The specific value 
of ε has minimal impact on the results as long as it is small 
enough to maintain numerical stability while preserving the 
intended behaviour of the normalization.

We now construct our loss function, which the network 
will try to minimize. Let p, q ∈ R48 be the predicted and 
target vectors respectively. We define the loss function ℓ as

ℓ(p, q) = MSE(p, q) + KL(σ(p), σ(q)) + |V (p) − V (q)| (1)

Where

2.3 Model architecture and implementation

Feed-forward neural networks are limited to providing a 
static mapping between input and output, and hence cannot 
represent context. Context, however, is an important com-
ponent of time-prediction tasks such as precipitation disag-
gregation, where each timestep is impacted by preceding 
timesteps.

In order to model context, signals from previous timesteps 
can be fed back into the network, with such models known 
as Recurrent Neural Networks, or RNNs (Staudemeyer and 
Morris 2019). Theoretically, RNNs should be able to pre-
serve long-term dependencies at an arbitrary timeframe, 
however, RNNs suffer from problems such as vanishing 
gradients, which can slow or stop training of the network 
completely (Pascanu et al. 2013). One such solution that 
addresses the vanishing gradient problem is long short-term 
memory (LSTM). An LSTM consists of a memory cell with 
three gates: an input gate, an output gate, and a forget gate, 
which together control the flow of information into and out 
of the cell (Gers et al. 2000).

The basic architecture of our model can be seen in Fig. 2. 
On a high level, the model processes input sequences of 48 
time steps through two successive LSTM layers of 62 units 
each, before the daily total constraint is enforced by the nor-
malization layer.

To understand how the data is transformed, we now 
walk through the network layer by layer. Let b represent the 
batch size of the input. Then, the input is of size (b, 48, 4): 
b sequences of 48 half-hours, each having 4 input features. 
This is passed through two LSTM layers, each with 62 units 
to capture both short-term and long-term temporal depen-
dencies, outputting a tensor of size (b, 48, 62). A fully con-
nected layer transforms this tensor into a single output for 
each entry in the sequence. This results in a tensor of size 
(b, 48, 1). A rectified linear unit (ReLU) activation function 
(Agarap 2019), defined by

Fig. 2 Model architecture 
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preprocessing done using pandas (McKinney 2010) and 
scikit-learn (Pedregosa et al. 2011). All training and infer-
ence was performed on a single Nvidia 4070 Ti Super GPU. 
We train a new model for each location to account for local 
climate characteristics.

The validation dataset is used to select the optimal model 
weights. At the end of each epoch, we compare the epoch’s 
validation loss to the best validation loss achieved so far. 
If epoch validation loss is lower, the current model state 
is saved and the best validation loss variable is updated 
accordingly. The model saved at the conclusion of this pro-
cess was then used for our final evaluations. This approach 
ensures that we select the model with the best generalization 
performance on unseen data, helping to mitigate overfitting 
to the training set.

The model is trained in two stages, in order to first learn 
general precipitation patterns and then make fine-grained 
adjustments to fine-tune the model. In the initial training 
run of 140 epochs, we use a learning rate scheduler with a 
reduction on plateau strategy (Loshchilov and Hutter 2017), 
which monitors validation loss and reduces the learning rate 
by a factor of 0.68 when the validation loss stops improving 
for six consecutive epochs. Initially, the learning rate is set 
at 10−3. This adaptive approach helps prevent the optimiza-
tion process from stagnating in local minima while allowing 
for finer parameter updates to occur as training progresses. 
After this initial training has completed, the saved model 
state is re-loaded and trained with a fixed learning rate of 
5 · 10−6 for a further 50 epochs.

Each epoch takes about 2.8 s to run, with the entire train-
ing and testing pipeline taking just over nine minutes to 
complete per location.

A summary of all hyperparameters used in the model’s 
architecture and training can be seen in Table 3.

3 Results and discussion

Performance evaluation of the model is done by comparing 
the generated series with the observed series with regards to 
the following metrics on the test dataset:

 ● Temporal mean and variance
 ● Root mean squared error and normalized mean squared 

error
 ● Number of precipitation half-hours
 ● Proportion of correctly detected precipitation half-hours
 ● Skill score
 ● Pearson product-moment correlation coefficient

We first present results for the base architecture consisting 
of two LSTM layers with 62 memory cells in each layer, 

MSE(p, q) = 1
48

48∑
i=1

(pi − qi)2  (2)

KL(σ(p), σ(q)) =
48∑

i=1
σ(p)i log σ(p)i

σ(q)i
 (3)

σ(z)i = ezi

∑48
j=1 ezj

, with σ : R48 → (0, 1)48
 (4)

V (z) = 1
48

48∑
i=1

(zi − µ)2, with µ =
48∑

i=1

zi

48  (5)

As shown in Eq. (1), our loss function combines three 
complementary components to address different aspects of 
modelling. Equation (2) measures the mean squared error 
between the elements of p and q, providing a measure of 
overall prediction accuracy. Equation (3) defines Kullback-
Liebler divergence (Kullback and Leibler 1951), which 
measures the dissimilarity between the probability dis-
tributions obtained from p and q using the softmax func-
tion σ (Goodfellow et al. 2016). KL divergence helps to 
assess differences in the distribution of rainfall throughout 
a day. This combination has been successfully employed 
in various machine learning architectures, particularly in 
variational autoencoders (Lucas et al. 2019), where it bal-
ances reconstruction fidelity with distributional matching. 
We extended this established framework by incorporating 
a variance matching term |V (p) − V (q)|. This addition is 
motivated by the need to preserve the statistical characteris-
tics of precipitation, particularly the frequency and intensity 
of extreme values.

This loss function is minimized by the optimization algo-
rithm Adam (Kingma and Ba 2014). To reduce training times 
and increase learning stability, we use batch normalization 
(Ioffe and Szegedy 2015) with a batch size of 32. The model 
is implemented in PyTorch (Paszke et al. 2019), with data 

Table 3 Model and training hyperparameters
Hyperparameter Value
LSTM hidden layer size 64
LSTM layer count 2
LSTM output size 1
Batch size 32
Epochs 140 initial + 50 for 

fine-tuning
Learning rate 10−3 initial / 

5 · 10−6 fine-tuning
Scheduler patience 6
Scheduler factor 0.68
Scheduler minimum learning rate 10−6

Dropout 0.24
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3.1 Comparison of statistical characteristics

Means and variance of the observed precipitation for each 
location are compared with the disaggregated series for the 
test dataset. We also calculate the root mean squared error, 
and normalized mean squared error1. Mean squared error is 

1 NMSE = MSE/ Var(y).

before considering the performance of architecture varia-
tions. Figures 3 and 4 show comparisons of the precipitation 
sequences generated by the model and from the observed 
data at half-hourly and re-aggregated hourly resolution 
respectively.

Fig. 3 Predicted versus observed 
half-hourly time series for Brisbane
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Fig. 4 Predicted versus observed 
hourly time series for Brisbane
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training data naturally biases the model toward more mod-
erate predictions, compounding the inherent smoothing ten-
dency of the LSTM architecture.

For a more direct comparison of performance, we can 
consider the Markov chain Monte Carlo (MCMC) method 
for hourly disaggregation presented by Ferrari et al. (2022), 
which also uses Canberra BoM data for evaluation. Com-
paring performance on Canberra specifically, our model 
achieved an RMSE of 0.4513, representing a 30.57% 
improvement over the RMSE of 0.65 reported by Ferrari 
et al.. Overall, the results indicate that our model is robust 
and outperforms existing methods in preserving the stud-
ied statistical characteristics of the observed precipitation 
series.

3.2 Preservation and detection of precipitation 
intervals

Bhattacharyya and Saha (2022) highlights preservation 
of the number of dry hours as a useful metric by which to 
evaluate a disaggregation model. Consequently, we present 
the number of dry and wet periods for both half-hourly and 
re-aggregated hourly measurements. A time period is dry if 
precipitation is less than 0.2 mm. A time period is wet if it is 
not dry. This cutoff is chosen because 0.2 mm is the small-
est amount of precipitation that can be measured by BoM’s 
equipment.

sensitive to outliers, and climate zones vary in the volatility 
of their rainfall. We normalize mean squared error in order 
to better facilitate the comparison of error between climate 
zones.

The results are shown in Table 4. For comparison with 
existing methods for daily-to-hourly disaggregation, we 
also present the same statistics for the partially re-aggre-
gated series in Table 5.

The hourly model presented by Bhattacharyya and Saha 
(2022) has a relative error in mean rainfall of 7.516% and 
a relative error in variance of 36.2%. In comparison, our 
LSTM model demonstrates significantly improved perfor-
mance on the mean, with only a slight increase in error for 
the variance.

While the model generally captures the temporal pat-
terns of rainfall, it tends to underestimate the magnitude 
of extreme events, as demonstrated in Fig. 4 for Brisbane. 
This underestimation is reflected in the measured variance 
error, and arises from two main causes. The first cause is 
the smoothing effect of LSTM predictions (Waqas and 
Humphries 2024), as the model prioritizes long-term depen-
dencies over sharp fluctuations. The second cause is the 
scarcity of extreme rainfall instances in the training data. 
In the Brisbane training set, for instance, 6.13% of wet days 
featured at least one instance of half-hourly precipitation 
exceeding 10 mm (126 of 2055), with such events compris-
ing just 1.5% of all wet half-hours. This imbalance in the 

Table 4 Statistical characteristics of half-hourly observed and predicted series
Location Average
CN BR SY ME CA

Mean (mm)
Observed 0.1027 0.0788 0.1015 0.0409 0.0512 0.07502
Predicted 0.1027 0.0788 0.1014 0.0409 0.0512 0.075
Variance (mm)2

Observed 0.7919 0.5060 0.4124 0.0894 0.1149 0.3829
Predicted 0.3039 0.2584 0.1831 0.0409 0.0457 0.1664
Relative error (%) 61.624 48.933 55.601 54.251 60.226 56.127
Root mean squared error (mm) 0.6899 0.567 0.5136 0.2345 0.2857 0.4581
Normalized mean squared error 0.6011 0.6353 0.6397 0.6151 0.7106 0.6404

Table 5 Statistical characteristics of re-aggregated hourly series
Location Average
CN BR SY ME CA

Mean (mm)
Observed 0.1933 0.1488 0.1980 0.0758 0.0868 0.14054
Predicted 0.1933 0.1488 0.1979 0.0758 0.0868 0.14052
Variance (mm)2

Observed 2.1752 1.5035 1.2141 0.2533 0.3128 1.0918
Predicted 1.0627 0.8632 0.6723 0.1415 0.1495 0.5778
Relative Error (%) 51.145 42.587 44.626 44.137 52.206 46.940
Root mean squared error (mm) 1.0269 0.8975 0.8195 0.3637 0.4513 0.7118
Normalized mean squared error 0.4848 0.5358 0.5532 0.5194 0.6512 0.5489
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is a significant improvement over the MCMC model by Fer-
rari et al., which detects 60% of wet hours with ± 2 h error, 
and 20% of wet hours with no error. Even at half-hourly res-
olution without re-aggregation, the LSTM maintains high 
accuracy, detecting 64.28% of wet half-hours with no error. 
The improved timing accuracy suggests a better capability 
to capture the temporal dynamics of precipitation events 
compared with the MCMC model.

3.3 Correlation and skill score

The temporal correlation between the predicted and 
observed series and the skill score for each location can be 
seen in Table 7.

The skill score presented by Perkins et al. (2007) mea-
sures the relative similarity of two probability density func-
tions and is an effective metric to capture the ability of the 

Following Ferrari et al. (2022) we also evaluate the 
model’s timing accuracy by calculating the percentage of 
correctly-detected wet periods, considering both half-hourly 
and hourly intervals. We allow for 0, ±1, and ±2 interval 
margins of error. For example, if precipitation occurs at 
10:00, predictions at 09:30, 10:00, or 10:30 are considered 
correct with a ±1 half-hour tolerance. Table 6 presents these 
results for each location.

The LSTM model has an average error of 1.04% in the 
total number of dry hours. This represents a 95.04% reduc-
tion in error over the results reported by Bhattacharyya and 
Saha, who observed an error of 20.96%. Such a substan-
tial enhancement in capturing dry periods indicates that our 
model more faithfully reproduces the intermittent nature of 
precipitation patterns than the feed-forward neural network.

The LSTM model also displays improved performance in 
timing accuracy. It can detect 83.46% of wet hours within a 
± 2 h window, and 69.04% of wet hours with no error. This 

Table 6 Number of wet and dry half-hours for each location
Location Average
CN BR SY ME CA

Number of dry half-hours
Observed 46,026 46,834 46,805 46,113 41,895
Predicted 45,580 46,596 46,177 46,326 41,303
Relative error (%) 0.967 0.508 1.341 0.462 1.413 0.939
Number of wet half-hours
Observed 3414 2846 4507 2655 2649
Predicted 3860 3084 5135 2442 3241
Relative error (%) 13.06 8.36 13.93 8.022 22.35 13.15
Number of dry hours
Observed 23,859 24,337 23,244 24,414 24,539
Predicted 23,720 24,168 22,769 24,468 24,128
Relative error (%) 0.583 0.694 2.044 0.221 1.675 1.043
Number of wet hours
Observed 2421 1967 3060 1890 1765
Predicted 2560 2136 3535 1836 2176
Relative error (%) 5.74 8.59 15.52 2.86 23.29 11.20
Correctly detected wet half-hours (%)
±0 half hours 65.88 60.68 70.85 55.86 68.14 64.28
±1 half hour 76.24 70.41 77.50 65.57 75.20 72.98
±2 half hours 81.40 75.79 81.34 69.87 78.75 77.43
Correctly detected wet hours (%)
±0 half hours 70.92 63.85 75.00 61.16 74.28 69.04
±1 half hour 81.58 75.29 83.40 72.49 81.42 78.87
±2 half hours 86.16 80.48 87.29 77.88 85.50 83.46

Table 7 Correlation and skill score measurements
Location Average
CN BR SY ME CA

R half-hourly 0.6317 0.6125 0.6035 0.6227 0.5449 0.6031
R hourly 0.7180 0.6852 0.6723 0.6952 0.5980 0.6737
Skill score half-hourly 0.7127 0.7024 0.6759 0.6932 0.7401 0.7049
Skill score hourly 0.6866 0.6533 0.6255 0.6498 0.6961 0.6623
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correlations with annual rainfall across both temporal reso-
lutions, suggesting that the model’s tendency to underesti-
mate variability is independent of climate type.

Direct comparison between wet and dry climate zones 
reinforced these findings. Cairns (1982 mm), Brisbane 
(1080 mm), and Sydney (1044 mm) all experience average 
annual precipitation over 1000 mm, and so were catego-
rised as ’wet’, while Melbourne and Brisbane were catego-
rised as ’dry’ due to annual precipitation of 518 mm and 
603 mm, respectively. T-tests showed significant differences 
in RMSE between wet and dry climates for both half-hourly 
(t = 5.678, p = 0.014) and hourly (t = 6.791, p = 0.007
) disaggregation. The absolute errors were consistently 
higher in wet climate zones. However, the NMSE showed 
no statistically significant differences between climate 
types (half-hourly: t = −0.761, p = 0.574; hourly: 
t = −0.925, p = 0.508), indicating that the relative model 
performance remains consistent across difference climate 
types when accounting for precipitation variance.

3.5 Alternative model architectures

We now consider the impact that altering the number of hid-
den LSTM layers and the number of LSTM units in each 
layer has on the disaggregation performance of the model, 
using Sydney data to facilitate the comparison. We call a 
model with hidden size h and l layers model (h, l) for brev-
ity (Table 9).

The base configuration (62, 2) has the second-lowest 
RMSE and NMSE of the tested configurations, with (124, 3) 
outperforming it by a small margin. However, (62, 2) has a 
smaller error in variance and more faithfully reproduces the 
number of wet and dry half-hours. (124, 3) suffers from a 
further problem that is not reflected in the above results: that 
of dying neurons. Due to the ReLU layer, bad initializations 
of the model can cause the whole network to become a con-
stant function. This prevents the model from learning, and 
is more often seen in deeper networks than shallower ones 
(Lu 2020). Consequently, it often needs to be re-initialized 
several times in order to produce a satisfactory result. The 
phenomenon was also observed in (62, 3), albeit to a lesser 
extent.

Alternate activation functions like the exponential linear 
unit (Clevert et al. 2016) have been developed to mitigate 
the dying neuron problem. However, our implementation 
specifically requires ReLU activation because the normal-
ization layer depends on each time step having non-negative 
values, which ReLU guarantees. Using alternative activa-
tion functions that allow negative values (such as ELU, 
Leaky ReLU, or tanh) would fundamentally disrupt the 
daily total constraint enforced by our normalization layer, 

model to simulate the distribution of precipitation over a 
day.

Sscore =
n∑

i=1
min(pi, qi) (6)

where n represents the number of intervals per day (24 for 
hourly data, 48 for half-hourly data), and p, q ∈ R48 the pre-
dicted and target tensors respectively. A skill score of 1 indi-
cates that the distributions are identical, while a skill score 
of 0 indicates that the distributions have no common area 
between them.

The model achieves correlations of 0.60 and 0.67 for the 
half-hourly and hourly series respectively. This indicates 
that the model effectively captures the timing and inten-
sity of precipitation events at fine temporal scales. It also 
demonstrates high skill in reproducing the probability dis-
tribution of precipitation intensities. With an average skill 
score of 0.70 for half-hourly and 0.66 for hourly, the model 
shows a strong ability to match the observed distribution of 
precipitation.

3.4 Climate-based performance analysis

To assess whether model performance varies across climate 
types, we performed a statistical anaylsis comparing RMSE 
and variance error across wetter and drier regions. Annual 
rainfall statistics for this purpose were sourced from BoM 
(2025). Table 8 presents the results of our analysis.

The analysis revealed a strong, statistically significant 
(p < 0.05) positive correlation between RMSE and annual 
rainfall for both the half-hourly (r = 0.926, p = 0.024) 
and re-aggregated hourly (r = 0.893, p = 0.042) outputs. 
This indicates that the absolute error of the model increases 
in regions with higher annual precipitation. However, 
when considering NMSE no statistically significant rela-
tionship with annual rainfall was observed (half-hourly: 
r = 0.557, p = 0.330; hourly: r = −0.606, p = 0.279). 
Similarly, variance errors showed weak, non-significant 

Table 8 Statistical analysis of model performance across different cli-
mate types
Metric Half-hourly Hourly
Pearson Correlation (RMSE vs. 
Annual Rainfall)

0.926 (p = 0.024
)

0.893 
(p = 0.042)

Pearson Correlation (NMSE vs. 
Annual Rainfall)

0.557 (p = 0.330
)

−0.606 
(p = 0.279)

Pearson Correlation (Variance 
Error vs. Annual Rainfall)

0.346 (p = 0.569
)

0.287 
(p = 0.640)

T-test for RMSE (Wet vs. Dry 
Climates)

t = 5.678, 
p = 0.014

t = 6.791, 
p = 0.007

T-test for NMSE (Wet vs Dry 
Climates)

t = −0.761, 
p = 0.574

t = −0.925
, p = 0.508
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3.6 Ablation study into effect of normalization layer

The normalization layer of the LSTM ensures that the pre-
dicted half-hourly precipitation values sum exactly to the 
observed daily total, maintaining physical consistency in 
disaggregation. To evaluate its impact, we conduct an abla-
tion study (Meyes et al. 2019) by training the model with 
and without this component on Sydney data and compar-
ing performance metrics. Table 10 presents a comparison of 
these configurations against observed values.

The results indicate that the normalization layer sub-
stantially improves model performance over multiple met-
rics. Most notably, the normalized model reproduces the 
observed mean precipitation with 0.10% error, whereas the 
non-normalized model significantly overestimates mean 
precipitation (72.61% error). This demonstrates the layer’s 
primary function of enforcing the daily total constraint. 
Both models underestimate precipitation variance to a simi-
lar degree (55.60% with normalization vs 56.77% without), 
suggesting that the normalization process does not signifi-
cantly affect the model’s ability to capture precipitation 
variability, although it does help. However, the representa-
tion of precipitation patterns differs considerably between 
the two approaches. The normalized model closely approxi-
mates the observed frequency of dry periods (1.34% error) 
while moderately overestimating wet half-hours (13.93%). 
In contrast, the non-normalized model substantially under-
estimates the number of dry half-hours (12.98% error) and 
dramatically overestimates wet half-hours (134.81% error).

The performance metrics further support the value of 
the normalization layer. The normalized model achieves 
lower error values for both RMSE (0.5136 vs. 0.6161) and 
NMSE (0.6397 vs. 0.9203). The correlation coefficient R is 
substantially higher with the normalization layer (0.6035) 
than without (0.3993), indicating improved alignment with 
observed precipitation patterns. The skill score changes 
minimally.

These ablation results demonstrate that the normalization 
layer maintains or improves the performance of the model 
across the evaluation metrics.

3.7 Sensitivity analysis of the loss function

As discussed in Section 3.1, the model tends to underesti-
mate the magnitude of extreme events. One intuitive way to 
address this problem is to increase the weight of the vari-
ance term in the loss function.

For this analysis, we define the loss function ℓλ for pre-
dicted tensor p and target tensor q as

ℓλ(p, q) = MSE(p, q) + KL(σ(p), σ(q)) + λ · |V (p) − V (q)| (7)

requiring substantial architectural redesign and potentially 
compromising the conservation properties of our model.

While deeper and wider networks like (124, 3) can 
achieve slightly better error rates, they come with the draw-
back of potential initialization issues and less accurate 
reproduction of certain precipitation characteristics. This 
suggests that the base configuration (62, 2) offers a good 
balance between performance and stability.

Table 9 Statistical characteristics of alternate model predictions
Number of hidden layers
1 2 3

RMSE(mm)
Hidden size 31 0.5621 0.5133 0.5079
Hidden size 62 0.5211 0.5056 0.5118
Hidden size 124 0.5436 0.5272 0.5052
Normalized MSE
Hidden size 31 0.7662 0.6388 0.6256
Hidden size 62 0.6585 0.6198 0.6353
Hidden size 124 0.7165 0.6740 0.6194
Variance error
Hidden size 31 50.02% 68.72% 63.87%
Hidden size 62 61.37% 61.83% 60.96%
Hidden size 124 49.95% 56.23% 62.07%
Dry half-hour error
Hidden size 31 1.62% 2.96% 2.17%
Hidden size 62 2.01% 1.73% 1.70%
Hidden size 124 1.08% 1.59% 1.85%
Wet half-hour error
Hidden size 31 16.84% 30.73% 22.50%
Hidden size 62 20.92% 17.95% 17.71%
Hidden size 124 11.23% 16.46% 19.21%
Bold indicates the best result for each metric. Underlined indicates 
the second-best result

Table 10 LSTM performance on SY data with and without normaliza-
tion layer
Metric Observed 

value
With layer Without 

layer
Mean (mm) 0.1015 0.1014 

(0.10%)
0.1752 
(72.61%)

Variance (mm)2 0.4124 0.1831 
(55.60%)

0.1783 
(56.77%)

Number of dry half-hours 46,805 46,117 
(1.34%)

40,729 
(12.98%)

Number of wet half-hours 4507 5135 
(13.93%)

10,583 
(134.81%)

RMSE NA 0.5136 0.6161
NMSE NA 0.6397 0.9203
R NA 0.6035 0.3993
Skill score NA 0.6759 0.6774
Values in brackets indicate relative error from observed value
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operating on a finer time scale and more effectively enforc-
ing the daily total constraint. This makes our work valuable 
in ensuring that precipitation can be reliably used for model-
ling and simulation of built environments.

There are several avenues for future research. Our pres-
ent approach could be refined by incorporating additional 
meteorological variables, applying the model to more loca-
tions and conducting further performance evaluations, or 
investigating the performance of the model when trained on 
an entire climate zone instead of individual stations. Addi-
tionally, exploring the performance of the model in low-data 
environments could be valuable in contexts where extensive 
historical data is unavailable. These improvements would be 
beneficial to better understand the limitations of the LSTM 
approach. Another promising direction is the investigation 
of foundation model performance in the context of precipi-
tation disaggregation. Foundation models, which are large-
scale machine learning models pre-trained on vast amounts 
of diverse data, have shown promising performance in 
transfer learning across various domains (Schneider et al. 
2024). Future research could explore how these models 
might capture more nuanced temporal dependencies.
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Noting that λ = 1 corresponds to the base model. Results 
are presented in Table  11.

Despite increasing the weight of the variance term, our 
sensitivity analysis reveals significant variance suppres-
sion persists across all tested λ values, with the base model 
(λ = 1) exhibiting a 55.60% underestimation of observed 
variance. Surprisingly, increasing λ to 2 worsens variance 
representation (60.00% error) despite the stronger pen-
alty, while further increasing to λ = 3 slightly improves it 
(58.24% error), indicating a non-monotonic relationship. 
This pattern mirrors the wet half-hour classification errors, 
suggesting direct influence of the variance penalty term on 
precipitation event detection. Despite these substantial dif-
ferences in variance representation, overall performance 
metrics (RMSE, NMSE, R, and skill score) remain notably 
stable across all λ values, with the base model achieving 
marginally superior results. This stability amid statistical 
discrepancies indicates that our model finds different local 
minima with similar global performance characteristics but 
distinct distributional properties. We conclude that the base 
model (λ = 1) provides the optimal balance between vari-
ance representation and prediction accuracy of the loss func-
tions tested, and that simply increasing the variance penalty 
coefficient does not effectively address the underestimation 
of extreme events.

4 Conclusion

This paper extends prior work on machine learning 
approaches to precipitation disaggregation and downscaling 
by presenting an LSTM model that can effectively gener-
ate half-hourly precipitation statistics from a recorded daily 
total and hourly meteorological variables. We analyse our 
model with regard to a number of performance metrics pre-
viously established for hourly precipitation and show that 
its performance is on par with existing methods while both 

Table 11 Sensitivity analysis on SY data
Metric Observed 

value
λ = 1 λ = 2 λ = 3

Mean (mm) 0.1015 0.1014 
(0.10%)

0.1014 
(0.10%)

0.1014 
(0.10%)

Variance (mm)2 0.4124 0.1831 
(55.60%)

0.165 
(60.00%)

0.1722 
(58.24%)

Number of dry 
half-hours

46,805 46,117 
(1.34%)

46,036 
(1.64%)

46,117 
(1.47%)

Number of wet 
half-hours

4507 5135 
(13.93%)

5276 
(17.06%)

5195 
(15.27%)

RMSE NA 0.5136 0.5129 0.5146
NMSE NA 0.6397 0.6379 0.6422
R NA 0.6035 0.6025 0.60
Skill score NA 0.6759 0.6749 0.6743
Values in brackets indicate relative error from observed value
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